This quick start page describes how to run the naive bayesian and complementary naive bayesian classification algorithms on a Hadoop cluster.
In the examples directory type:
mvn -q exec:java
-Dexec.mainClass="org.apache.mahout.classifier.bayes.mapreduce.bayes.<JOB>"
-Dexec.args="<OPTIONS>"
mvn -q exec:java
-Dexec.mainClass="org.apache.mahout.classifier.bayes.mapreduce.cbayes.<JOB>"
-Dexec.args="<OPTIONS>"
In $MAHOUT_HOME/, build the jar containing the job (mvn install) The job will be generated in $MAHOUT_HOME/core/target/ and it’s name will contain the Mahout version number. For example, when using Mahout 0.1 release, the job will be mahout-core-0.1.jar
(Optional) 1 Start up Hadoop: $HADOOP_HOME/bin/start-all.sh
Put the data: $HADOOP_HOME/bin/hadoop fs -put
Run the Job: $HADOOP_HOME/bin/hadoop jar
$MAHOUT_HOME/core/target/mahout-core-
Get the data out of HDFS and have a look. Use bin/hadoop fs -lsr output to view all outputs.
BayesDriver, BayesThetaNormalizerDriver, CBayesNormalizedWeightDriver, CBayesDriver, CBayesThetaDriver, CBayesThetaNormalizerDriver, BayesWeightSummerDriver, BayesFeatureDriver, BayesTfIdfDriver Usage:
[--input <input> --output <output> --help]
Options
--input (-i) input The Path for input Vectors. Must be a SequenceFile of Writable, Vector.
--output (-o) output The directory pathname for output points.
--help (-h) Print out help.