
Command Line Interface,
Stochastic SVD∗

Contents

1 Background information 2

1.1 Stochastic SVD (SSVD) . 2

Single space for comparing row-items and column-items. 2

Folding in new observations. 2

A note about stochasticity and result precision. 2

1.2 PCA options in SSVD . 3

Outline: data points are row vectors. 3

Transformations to/from for new observation data points. 4

MAHOUT-817 goals: why brute force approach is hard in context of big data compu-
tations. 4

2 Input/output file formats and layout 5

3 CLI usage 6

Options. 6

Standard Mahout options. 7

4 Embedded use 8

4.1 SVD . 8

4.2 PCA . 8

5 FAQ 8

5.1 Small splits, small problems . 8

5.2 Split idempotency of input A . 9
∗Dmitriy Lyubimov, dlyubimov at apache dot org

1

1 Background information

1.1 Stochastic SVD (SSVD)

Stochasitc SVD method in Mahout produces re-
duced rank Singular Value Decomposition output
in its strict mathematical definition:

A ≈ UΣV>,

i. e. it creates outputs for matrices U, V and
Σ, each of which may be requested individually.
The desired rank of decomposition, henceforth de-
noted as k ∈ N1, is a parameter of the algorithm.
The singular values inside diagonal matrix Σ satisfy
σi+1 ≤ σi ∀i ∈ [1, k − 1], i.e. sorted from biggest to
smallest. Cases of rank deficiency rank (A) < k are
handled by producing 0s in singular value positions
once deficiency takes place.

Single space for comparing row-items and
column-items. On top of it, there’s an option
to present decomposition output in a form of

A ≈ UσV>σ , (1)

where one can request Uσ = UΣ0.5 instead of U
(but not both), Vσ = VΣ0.5 instead of V (but not
both). Here, notation Σ0.5 implies diagonal matrix
containing square roots of the singular values:

Σ0.5 =

√
σ1 · · · 0
...
0 · · · √σk

 .

Original singular values Σ are still produced and
saved regardless.

This option is a nod to a common need of compar-
ing actors represented by both input rows and input
columns in a common space. E.g. if LSI is per-
formed such that rows are documents and columns
are terms then it is possible to compare documents
and terms (ether existing or fold in new ones) in
one common space and perform similarity measure-
ment between a document and a term, rather than
computing just term2term or document2document
similarities.

Folding in new observations. It is probably
worth mentioning the operation of “folding in” new
observations in context of this method, since it is
often a basis for incremental methods.
If c̃r (c̃c) is a new row (column) observation in
addition to original input A, then correspondent
“new” row vectors of Ũ

(
Ṽ
)
can be obtained as

ũ = Σ−1V>c̃r, (2)
ṽ = Σ−1U>c̃c. (3)

Similarly, for the case (1) folding in new observa-
tions into rows of Ũσ

(
Ṽσ

)
would look like

ũσ = V>σ c̃r, (4)
ṽσ = U>σ c̃c. (5)

Thus, new rows can be added to matrices denoted
as Ũ

(
Ṽ
)
corresponding to new observations as

new observations become available, i.e. incremen-
tally. Given that new observations are usually mod-
erately sparse vectors, it might be feasible to do
fold-in in real time or almost real time, assuming
proper fast row-wise indexing of U (V) exists (e.g.
using a batch request to an HBase table contain-
ing rows of U (V)). However, since operation of
folding in new observations doesn’t change origi-
nal decomposition and its spaces, such new obser-
vations cannot be considered ’training’ examples.
Typically, from time to time accumulated new ob-
servations can be added to original input A and the
whole decomposition can be recomputed again.
Common applications for SVD include Latent
Semantic Analysis (LSA), Principal Component
Analysis (PCA), dimensionality reduction and oth-
ers.

A note about stochasticity and result preci-
sion. The case that needs to be specifically warned about
is the case where the data has variances in a great deal of
principal orthogonal directions with no statistically signfi-
cant differences in between them, i.e., the input data has
no interesting spectrum decay. A matrix where each en-
try is generated from a random distribution with 0 mean,
would be an example of such input data. Figuring princi-
pal data variances for such randomly generated and at the
same time “big” data are hard and may result in sufficiently
problematic errors in the final solution compared to optimal
solution (if we could obtain it at that scale). But the cases

2

dominated by a random noise with no statistically signifi-
cant signal are hopefully not the data we actually are forced
to face with in practice. But even quite small signal buried
in a sea of “big data” noise could probably eventually be
dug out given enough computational effort with spent, with
this method (by cranking up the -q setting) but will likely
also eventually reach a point of diminishing return. The said
is equally true for any n-th singular vector where spectrum
decay sufficiently flattens out.

Another sufficiently not very interesting case are “problems
too small” (see also §5.1). Optimal solution will be pro-
duced with k + p = rank(A) though, and stochastic errors
will start appearing with k + p < rank (A). However errors
will hopefully be more acceptable if k + p � rank (A).

1.2 PCA options in SSVD

Some of interesting applications of SVD is di-
mensionality reduction and Principal Component
Analysis. As of MAHOUT-817, SSVD method
is equipped with options helping to produce both
PCA and dimensionality reduction transforma-
tions.

PCA is also one of the methods to achieve dimen-
sionality reduction.

Outline: data points are row vectors. We
approach general PCA and dimensionality reduc-
tion problem with respect to input expressed in
Mahout’s distributed row matrix format. We also
assume data points are row vectors in such matrix1.
We denote such m× n input matrix as A(pca):

A(pca) =

a>1
a>2
...
a>m

Column mean is n-vector2

ξ =

ξ1
ξ2
...
ξn

= 1

m

m∑
i

ai.

We denote m× n mean matrix as

Ξ =

ξ>

ξ>

...
ξ>

 ∈ Rm×n

Traditional approach under these settings starts
with finding a column mean ξ and subtract it from
all data points (row vectors) of the input

A = A(pca) −Ξ

and then proceeds with finding a reduced k-rank
SVD:

A ≈ UΣV>. (6)

At this point rows of U (or, more strictly, rows
of product UΣ) correspond to original data points
(rows of A(pca)) converted to approximate PCA
space3 and V represents approximate eigenvectors
of the covariance matrix of our input (and we are
done with PCA part at this point). Note that since
our datapoints in this case are row vectors in the
input (and not column vectors), covariance matrix
is C = 1

mA>A. 4

1Note that in wikipedia article input data points are considered to be column vectors, so our input is transpose w.r.t. to
case outlined in the wikipedia PCA article.

2In many cases in literature one would find PCA mean vector denoted as µ.
3Exact PCA space requires AV product but can be assumed as AV ≈ UΣ because of (6)
4Some courses (see Andrew Ng’s ML online lectures) also mention a metric aka “percent of variance retained”∑k

i=1 σi/
∑n

i=1 σi · 100% that seems to suggest that it would be a metric to compare “goodness” of choice for k . We of
course cannot know all of the singular values of the full SVD in context of SSVD, although we can estimate that∑k

i=1 σi∑n

i=1 σi

≥

∑k

i=1 σi

(n− k)σk +
∑k

i=1 σi

,

i.e. we can make a statement in a sense that “we have at least that much variance retained” instead. Whether this estimate is
useful or not in practice, is not clear to me as I have no error estimate (and, more importantly, no error estimate with stochastic
error baked in) between expression on left and right of the inequality at the moment. But at least it puts some metric threshold
on how big k we may need and identify some cases where smaller values of k will suffice given particular input and minimum
variance retained prerequisite thus reducing need for flops. Another possible way to estimate it is perhaps to try and fit existing
singular values into asymptotically decaying curve in order to produce a better guess for

∑n

i=k+1 σi.

3

http://en.wikipedia.org/wiki/Dimensionality_reduction
http://en.wikipedia.org/wiki/Dimensionality_reduction

Transformations to/from for new obser-
vation data points. Dimensionality reduction
transformations are directly following from SVD
fold-in operation (2) described above.
Transformation of any new data point observation
of an n-vector c̃r into reduced dimensionality PCA
space k-vector ũ will look like

ũ = Σ−1V> (c̃r − ξ) (7)

(this operation is essentially an SVD fold-in op-
eration corrected for the mean subtraction). Note
that, again, if input vectors tend to be quite sparse,
then (7) could be decomposed as

ũ = Σ−1V>c̃r −Σ−1V>ξ,

and online conversion can be sped up by precom-
puting term Σ−1V>ξ which ends up to be a small
dense k-vector, and big matrix V could be row-
indexed for fast online matrix-vector multiplica-
tion.
Inverse transformation (from reduced PCA space
into original space) looks like

c̃r = ξ + VΣũ. (8)

MAHOUT-817 goals: why brute force ap-
proach is hard in context of big data com-
putations. In context of massive computations,
input A(pca) is often rather sparse. Sparse matrices
are packed and their subsequent operations within
Mahout framework are optimized to account for
degenerate nature of zero elements computation.
Sometimes such reduction of need for flops and

space may approach several orders of magnitude.
However, mean subtraction step would turn such
sparse inputs into a dense matrix

(
A(pca) −Ξ

)
.

Such intermediate input will take a lot of space
and subsequent SVD will require a lot of flops.
Fortunately, this can be addressed in context of
SSVD method in a way that will be (almost) cost-
equivalent to a regular SSVD computation on orig-
inal sparse input A(pca).

MAHOUT-817 addresses two goals:

• Provide column-wise mean computation step
in the whole pipeline (or use outside mean
vector if already available)

• Lift the dense matrix data concerns per
above.

The sparser the original input is, the more efficiency
gain is to be had by using SSVD PCA options com-
pared to brute-force approach.

If original input is 100% dense, SSVD PCA options
will have roughly the same cost as brute-force ap-
proach.

MAHOUT-817 introduces two additional pca op-
tions: --pca and --pcaOffset that request to
treat incoming data as a PCA input. SVD rank
opton -k will correspond to the reduced dimen-
sionality of PCA space. MAHOUT-1067 introduces
option --uSigma. In most cases where you might
be looking to reduce dimensionality while retaining
variance, you probably need combination of options
-pca true -U false -V false -us true.5 See
§3 for details.

Finally, at the risk of complete disregard for reality we can do even rougher estimate as

variance retained =

∑k

i=1 σi∑n

i=1 σi

≈

∑k

i=1 σi

0.5 (n− k)σk +
∑k

i=1 σi

.

5Careful, option parsing in Mahout is tricky: just “-pca” is the same as “-pca false”, i.e. no pca.

4

2 Input/output file formats and layout

Input A, as well as outputs U (Uσ) , V (Vσ) or
UΣ, are in Mahout’s Distributed Row Matrix for-
mat, i.e. set of sequence files where value is of
VectorWritable type. As far as keys are con-
cerned, rows of A may be keyed (identified) by any
Writable (for as long as it is instantiable thru a
default constructor). That, among other thnigs,
means that this method can be applied directly on
the output of seq2sparse where keys are of Text
type6.

Definition of output U (Uσ) is identical to defini-
tion of the input matrix A, and the keys of cor-
responding rows in A are copied to corresponding

rows of output U (Uσ) or UΣ. As of MAHOUT-
1067, if row vectors of A are Mahout’s named
vectors, then corresponding output rows of the
said outputs are also named vectors with the same
names as row vectors of the input.

Definition of output V (Vσ) is always sequence
file(s) of (IntWritable,
VectorWritable) where key corresponds to a col-
umn index of the input A.

Output of Σ is encoded by a single output file
with a single vector value (VectorWritable) with
main diagonal entries of Σ aka singular values(
σ1 · · · σk

)
.

6(TODO: re-verify)

5

3 CLI usage7

mahout ssvd <options>

Options.

-k, --rank <int-value> (required): the requested SVD rank (minimum number of singular values and di-
mensions in U, V matrices). The value of k + p directly impacts running time and memory
requirements. k+p=500 is probably more than reasonable. Typically k+ p is taken within
range 20...200.

-p, --oversampling <int-value> (optional, default 15): stochastic SVD oversampling. p doesn’t seem to have
to be very significant. If power iterations (q > 0) are used then p perhaps could be kept quite
low, not to exceed 10% of k.

-q, --powerIter <int-value> (optional, default 0): number of power iterations to perform. This helps fighting
data noise and improve precision significantly more than just increasing p. Each additional power
iteration adds 2 more steps (map/reduce + map-only). Experimental data suggests using q = 1
is already producing quite good results which are hard to much improve upon.

-t, --reduceTasks <int-value> (required). The number of reducers to use. Recommended value for this option
~ 95% or ~190% of available reducer capacity to allow for opportunistic executions. However,
this value would also depend on the task size: at some point increasing this value too much
further may reach a point of diminishing returns or cause deficient blocking issue in reducers of
ABtJob if chunks of works are too small. This is a super important parameter, hence it is now
required.

-r, --blockHeight <int-value> (optional, default 10,000): the number of rows of source matrix for block com-
putations during Y = QR decomposition. Taller blocking causes more memory use but produces
less blocks and therefore somewhat better running times. The most optimal mode from the run-
ning time point of view should be 1 block per 1 mapper. This cannot be less than k+p.

-oh, --outerProdBlockHeight <int-value> (optional, default 30,000): the block height during B = Q>A opera-
tion89.

-abth, --abtBlockHeight <int-value> (optional, default 200,000): the block height during Yi = AB>i multiplication89.

-s, --minSplitSize <int-value> (optional, default: use Hadoop’s default): minimum split size to use in map-
pers reading A input. 10

7As of Mahout 0.8 trunk.
12/13/2011 adjusted for MAHOUT-922 changes.
02/22/2012 MAHOUT-817.
10/07/2012 adjusted for MAHOUT-1067 changes.

8With extreme sparse matrices increasing this parameter may lead to better performance by reducing computational pressure
on the shuffle and sort and grouping sparse records together.

9 Watch for GC thrashing and swap. Values too high may cause GC thrashing and/or swapping, both of which are capable
of bringing job performance down to a halt. Don’t starve jobs for memory. Defaults are believed to work well for -Xmx800mb
or above per child task.

10As of this day, I haven’t heard of a case where somebody would actually have to use this option and actually increase split
size and how it has played out. So this option is experimental.
Since in this version projection block formation happens in mappers, for a sufficiently wide input matrix the algorithm may

not be able to read minimum k+p rows and form a block of minimum height required, so in that case the job would bail out at

6

-U, --computeU <true|false> (optional, default true). Request computation of the U matrix

-V, --computeV <true|false> (optional, default true). Request computation of the V matrix

-vhs, --vHalfSigma <true|false> (optional, default: false): compute Vσ = VΣ0.5

-uhs, --uHalfSigma <true|false> (optional, default: false): compute Uσ = UΣ0.5

-us, --uSigma<true|false> (optional, default:false): compute product UΣ

-pca<true|false> (optional, default:false) run in pca mode: treat the input as A(pca) and also compute column-
wise mean ξ over the input and use it to compute PCA space (unless external column mean is
already provided by --pcaOffset). (see §1.2)

--pcaOffset <ξ-path> (optional, default: none). Path(glob) of external column mean. The glob parameter
must point to a sequence file containing single VectorWritable row as the ξ mean (see §1.2).
This option can be used if column-wise mean is already efficiently obtained as byproduct from
another pipeline, or if one wants to use custom centering offset for the data. This will save one
MR pass over input since the mean will not have to be computed.

Standard Mahout options.

--input <glob> HDFS glob specification where the DistributedRowMatrix input to be found.

--output <hdfs-dir> non-existent hdfs directory where to output U,V and Σ (singular values) files.

--tempDir <temp-dir> temporary dir where to store intermediate files (cleaned up upon normal completion).
This is a standard Mahout optional parameter.

-ow, --overwrite overwrite output if exists.

the very first mapping step. If this happens, one of the recourses available is to force increase in the MapReduce split size using
SequenceFileInputFormat.setMinSplitSize() property. Increasing this significantly over HDFS block size may result in network
IO to mappers. Another caveat is that one sometimes does not want too many mappers because it may in fact increase time of
the computation. Consequently, this option should probably be left alone unless one has significant amount of mappers (as in
thousands of map tasks) at which point reducing amount of mappers may actually improve the throughput (just a guesstimate
at this point).

7

4 Embedded use

4.1 SVD

It is possible to instantiate and use SSVDSolver
class in embedded fashion in Hadoop-enabled ap-
plications. This class would have getter and set-
ter methods for each option available via command
line. See javadoc for details.

4.2 PCA

SSVDSolver is focused on SSVD solving primar-
ily though, but if one looks to embed full PCA

pipeline, an extra step is needed. One thing
SSVDSolver doesn’t know how to do is how to
compute columns mean ξ. Class SSVDCli (com-
mand line wrapper) uses MatrixColumnMeansJob
for that purpose. Hence, full PCA pipeline is a
two step pipeline: compute ξ + run pca-amended
SSVD with it. See the code of command line wrap-
per SSVDCli for an example of how to run this 2
step solution.

5 FAQ

5.1 Small splits, small problems

“Can someone list all the constrains on the parameters (k,p &aBlockRows) that should be satisfied in order for the Q-job in
ssvd to work fine? (...) I am getting the errors: "Givens thin QR: must be true: m>=n" or ""new m can’t be less than n".

• Since we are in fact finding k+p singlular values and singular vectors, general SVD requires rank (A) ≥
k + p. In more pragmatic terms this can be relaxed as follows: if A is input of m× n geometry, then
input must satisfy

min (m,n) ≥ k + p.

This is also known as “problem too small” condition. All user issues fell into that category so far.

• In distributed version, blocking algorithms also require that every split of input A contains at least
k + p vectors.

– In particular, this also means that in case of multiple files comprising A, every input file of a
distributed row matrix must contain at least k + p row vectors. This is also the case of “problem
too small” and requires consolidating several small files into a bigger input file so that split
constraint holds.

– It may be the case that some splits still have too few rows. However, in practice I never saw that
happening, provided all above “problem too small” issues are not the case. However, assuming
this is an issue, one need to adjust hadoop to use bigger splits (perhaps by trying bigger values
for -s option than default split size). However, increasing splits may increase I/O and if it is a
problem, perhaps using hdfs with a bigger split size is a better option to address this. (Again,
remember that I still never encountered that case so that is quite unlikely).

8

• Similar to the reasoning in previous bullet, if q > 0 is used (power iterations), same problem theoreti-
cally may appear in reducers of ABtJob if any reducer task receives less than k+p rows and unable to
form vertical blocks with minimum rank required for the computation. However, since k+p ∼ 20..200,
it is also a problem-too-small case. In practice, I never saw this actually happening, if it happens, you
probably do not need as many reducers as was claimed by -t option, it will not provide any tangible
speed benefit on such short data streams.

5.2 Split idempotency of input A

Every time hadoop job attempts to create splits of input A, it has to happen idempotently (which is basically
a function of SequenceFileInputFormat). This is always the case with hadoop versions as of the time of
this writing though.

9

	Background information
	Stochastic SVD (SSVD)
	Single space for comparing row-items and column-items.
	Folding in new observations.
	A note about stochasticity and result precision.

	PCA options in SSVD
	Outline: data points are row vectors.
	Transformations to/from for new observation data points.
	MAHOUT-817 goals: why brute force approach is hard in context of big data computations.

	Input/output file formats and layout
	CLI usageAs of Mahout 0.8 trunk. 12/13/2011 adjusted for MAHOUT-922 changes. 02/22/2012 MAHOUT-817. 10/07/2012 adjusted for MAHOUT-1067 changes.
	Options.
	Standard Mahout options.

	Embedded use
	SVD
	PCA

	FAQ
	Small splits, small problems
	Split idempotency of input A

